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Abstract. Understanding the factors affecting parasite aggregation in natural host pop-
ulations is one of the central questions in parasite ecology. While different biological
mechanisms giving rise to aggregation have been documented in the literature, the role of
established parasites in vector attraction, and its importance in determining clumped parasite
distributions has received less attention. In a two-year field study, we evaluated the im-
portance of a bird vector, Mimus thenca (Mimidae), on the aggregation dynamics of the
holoparasitic mistletoe, Tristerix aphyllus, on its cactus host, Echinopsis chilensis. Removal
of T. aphyllus from cacti decreased the number of visits and the time spent by the bird
vector, which resulted in a 3.5-fold lower seed deposition of the mistletoe on experimental
hosts than on control hosts. Vector preference, however, was not the only factor affecting
aggregation in this system. Spine length of the cactus acted as a first line of defense against
parasitism, by discouraging bird perching on top of host columns. While heavily parasitized
hosts received more seeds than unparasitized hosts, spines counteracted this effect. These
results provide field evidence that parasite aggregation results from the balance between
vector behavior and host resistance traits.
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seed deposition; seed dispersal; tolerance; Tristerix aphyllus; vector-borne disease.

INTRODUCTION

A general characteristic of many host–parasite re-
lationships is the high aggregation of parasites on a
small proportion of the host population. This clumped
distribution has been the focus of theoretical and em-
pirical research by parasite ecologists (e.g., Crofton
1971, Pennycuick 1971, Anderson and May 1978, An-
derson and Gordon 1982, Dietz 1982, Pacala and Dob-
son 1988, Shaw and Dobson 1995, Poulin 1998, Shaw
et al. 1998). Heterogeneity in the susceptibility of hosts
to acquiring the infection has been one of the most
frequently invoked biological mechanisms to explain
clumped parasite distributions. Host susceptibility may
occur as a result of several, not mutually exclusive
mechanisms. For example, genetic-based susceptibility
occurs when some hosts lack parasite resistance and
they tend to acquire the infection first, with resistant
individuals acquiring the infection later or at a slower
rate (Munger et al. 1989, Wassom et al. 1996). Simi-
larly, habitat-based susceptibility occurs if the expo-
sure to infection is patchy in space and time, and some
hosts inhabit places where the risk of infection is high
in comparison to alternative habitats (e.g., Keymer and
Anderson 1979, Anderson and Gordon 1982, Janovy
and Kutish 1988). Host behavior-based susceptibility
occurs when parasites cause changes in host behavior
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that render parasitized hosts more exposed to subse-
quent infections than unparasitized hosts (e.g., Day and
Edman 1983, Dobson 1988, Poulin et al. 1991). Vector
behavior-based susceptibility occurs if established par-
asites render hosts more attractive to the vector species
carrying the infectious disease, resulting in an in-
creased infection rate on the previously parasitized
hosts. Even though theoretical studies on this last
mechanism predict important demographic and evo-
lutionary consequences for host and parasite popula-
tions (e.g., Kingsolver 1987, Dye and Williams 1995),
empirical evidence for vector-based susceptibility is
scarce and entirely confined to arthropod vectors (e.g.,
Rossignol et al. 1985, Norval et al. 1989, McCall and
Lemoh 1997, Kelly and Dye 1997).

Most studies designed to understand the factors in-
volved in parasite aggregation have focused on just one
of the mechanisms described above. This simplifica-
tion, albeit convenient, assumes that mechanisms in-
fluence aggregation independently rather than comple-
mentarily (reviewed by Combes 2001). This is not nec-
essarily true. The level of parasite aggregation may
result from the interplay of diverse mechanisms influ-
encing host susceptibility, and current aggregation pat-
terns may even represent the net result of antagonistic
mechanisms. On the one hand, factors increasing host
susceptibility will favor reinfection of previously par-
asitized individuals, therefore increasing aggregation
in host populations. On the other hand, factors pre-
venting hosts from becoming parasitized, such as host
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PLATE 1. A Chilean mockingbird, Mimus thenca, perched
on Echinopsis chilensis. Note the emergence of the mistletoe
Tristerix aphyllus and seed deposition at the right side of the
cactus column. Photo credit: R. Medel.

resistance or tolerance to disease (reviewed by Roy and
Kirchner 2000, Stowe et al. 2000), will prevent infec-
tion or aggregation in host populations. In spite of the
simplicity of this idea, evidence for conflicting eco-
logical forces influencing parasite aggregation has not
been documented in the literature.

Unlike most host–parasite systems, propagules of
parasitic plants represent attractive and often-conspic-
uous food items, upon which a diverse assemblage of
frugivorous birds responsible for seed dispersal con-
verge (Molau 1995, Watson 2001). While several stud-
ies have focused on the seed dispersal of parasitic
plants (e.g., Godschalk 1983, Davidar 1987, Reid 1989,
Sargent 1995), ecologists have only recently begun to
study mistletoes in the context of host–parasite rela-
tionships (e.g., Martinez del Rio et al. 1996, Norton
and Carpenter 1998, Medel 2000, 2001, Mutikainen et
al. 2000, Aukema and Martı́nez del Rı́o 2002a, b, c).
In this paper, we evaluate the importance of vector
behavior and host defensive traits in determining par-
asite aggregation in a system that consists of the leafless
holoparasitic mistletoe Tristerix aphyllus (Lorantha-
ceae), its cactus host Echinopsis chilensis (Cactaceae),
and a bird vector, the Chilean mockingbird Mimus then-
ca (Mimidae) (see Plate 1). Previous work documented
that seeds of T. aphyllus tend to be deposited on a small
proportion of the host population (Martinez del Rio et
al. 1995). Further correlative and experimental evi-
dence revealed that the spine length of cacti acts as a
first line of defense by discouraging the vector M. then-
ca from perching on the top of cactus columns (Medel
2000). Long spine-length E. chilensis are less visited
by the mockingbird and suffer less seed deposition than
short spine-length individuals. For instance, the spine
length of cacti unvisited by M. thenca is 1.29 cm longer
on the average than spines of visited E. chilensis. Sim-
ilarly, individuals that did not receive seeds of T. aphyl-
lus have spines 0.84 cm longer on the average than
cacti receiving seeds of the mistletoe (Medel 2000). In
this paper, we present experimental and correlative in-
formation from a two-year field study designed to eval-
uate the importance of vector behavior and host de-
fensive traits on parasite aggregation. More specifi-
cally, we address the following questions: (1) Do par-
asitized cacti receive higher mistletoe seed deposition
than unparasitized hosts? (2) What is the importance
of host defensive traits in preventing mistletoe aggre-
gation? (3) Does mistletoe seed deposition on cacti
result from a compromise between vector behavior and
host defensive traits?

METHODS

Study site and natural history

Field work was conducted during 1994 and 1995 at
the Reserva Nacional Las Chinchillas (318309 S, 718069
W, IV Región), a 4229-ha Chilean National Reserve
located ;300 km northeast of Santiago. The climate is

of a semiarid mediterranean type with most rainfall
occurring in the winter season. Long-lasting droughts
alternate with unusual years of high precipitation that
co-occur with the El Niño Southern Oscillation events.
Vegetation is thorny with Flourensia thurifera, Bahia
ambrosoides, and Porlieria chilensis as the most com-
mon shrub species. Cactus species are columnar Echin-
opsis chilensis and Eulychnia acida, and globular
Opuntia berteroniana and Eriosyce sandillon. Tristerix
aphyllus (Loranthaceae) is a leafless holoparasitic mis-
tletoe endemic to the arid–semiarid region of Chile that
parasitizes only species of the family Cactaceae (Kuijt
1988). Its distribution ranges from 278 to 34.58 S (Med-
el et al. 2002). Fruits are single-seeded pseudoberries.
The Chilean mockingbird M. thenca swallows whole
ripe fruits, and is the only species that disperses the
seeds (66.6-h observation). The bird eats 3.16 fruits
per bout on the average (1 SD 5 3.60, N 5 120 ob-
servations on E. chilensis), and spends most of its time
perching on living cacti (45.6%), shrubs (22.9%), and
dead cacti (19.2%) (18.3-h observation of M. thenca).
The sticky seeds of the mistletoe are defecated by the
mockingbird, no more than three at a time, and often
on perches different from their feeding places (only 10
out of 120 feeding events resulted in defecations in the
same cactus). Seeds germinate one day after defecation,
then a bright reddish radicle undergoes elongation until
reaching the host epidermis. The mistletoe exists as an
endophyte for ;17 months before emerging from the
cactus tissues as a red inflorescence (Mauseth et al.
1984, 1985, Botto-Mahan et al. 2000). Because more
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FIG. 1. The distribution of number of hosts
of T. aphyllus inflorescences on Echinopsis chi-
lensis. Total number of hosts 5 588. The dis-
tribution of the mistletoe on cacti was highly
overdispersed relative to a Poisson distribution
( 5 172.17, P , 0.001), but fit a negative2x2

binomial distribution ( 5 2.69, P 5 0.611,2x4

mean 6 1 SE 5 0.655 6 0.066, k 6 1 SE 5
0.364 6 0.035.

than one mistletoe inflorescence can emerge from a
single seed, our measures of aggregation focus on the
number of inflorescences rather than on the number of
individual mistletoes on cacti.

Field and statistical procedures

The degree of parasite aggregation has been pri-
marily described by the negative binomial distribution
(NBD hereafter)(Shaw and Dobson 1995). This distri-
bution function has two parameters, the mean (m), and
an inverse measure of aggregation (k). If k approaches
infinity, distribution converges to the Poisson, indi-
cating random parasitism over the host population.
However, if k approaches zero, then NBD converges
to the logarithmic series. Most estimated k values in
natural host–parasite populations are lower than one,
indicating aggregated parasitism (Shaw et al. 1998).
We recorded the number of mistletoe inflorescences
from parasitized cacti exceeding 1 m height in an area
of ;7 ha. Data from 588 parasitized cacti were fitted
to the Poisson random distribution and then to NBD
using maximum likelihood in the k parameter estima-
tion.

To evaluate the role of established parasites on bird
behavior and seed deposition, we focused on a popu-
lation of ;3 ha (318309 S, 718079 W) with 45.5% mis-
tletoe prevalence on E. chilensis. This prevalence is
relatively high in comparison to other populations in
the Reserve (26% of parasitism on the average, N 5
10 populations). We removed the inflorescences of T.
aphyllus from 45 randomly chosen parasitized individ-
uals of E. chilensis, leaving 211 parasitized cacti with
intact mistletoes. Parasite removal was performed in
May 1994, at the beginning of the seed dispersal sea-
son. Experimental and control cacti did not differ either
in the number of columns (mean 6 1 SE, experimental
5 8.09 6 0.82 no. columns; control 5 8.90 6 0.43 no.
columns, F1, 254 5 0.786, P 5 0.376) nor height (mean
6 1 SE, experimental 5 2.54 6 0.11 m; control 5 2.45

6 0.05 m, F1, 254 5 0.570, P 5 0.451) at the beginning
of the experiment. Similarly, experimental and control
individuals had a comparable number of inflorescences
of T. aphyllus prior to parasite removal (mean 6 1 SE,
experimental 5 29.44 6 3.60 no. inflorescences; con-
trol 5 33.54 6 1.88 no. inflorescences, F1, 254 5 0.928,
P 5 0.336). Because it was not feasible to remove the
portion of the mistletoe that lives within the tissues of
the cactus, we restricted our experimental procedure to
the external portion of T. aphyllus. Experimental and
control cacti were tagged with a numbered plate that
allowed their identification with binoculars from a 200-
m distant observation point. We recorded the foraging
behavior of M. thenca on T. aphyllus during 99 h, from
June to November 1994, at 20–25-d intervals. Obser-
vations were performed from 0700–1200 hours, and
always on sunny days. Besides the observations of for-
aging birds, we recorded the number of seeds deposited
on the cactus surface during 171 days after the start of
the experiment, at 20–25-d intervals. Because the seeds
of T. aphyllus are white translucent when just defecated
by the bird, and turn reddish after a week, we focused
on white seeds only, probably underestimating the real
seed deposition rate but avoiding repeated sampling of
seeds. Seed deposition patterns through time were test-
ed by repeated-measures ANOVA for the six posttreat-
ment sampling dates. Cumulative seed deposition was
also compared between experimental and control cacti
by one-way ANOVA. Data on spine length were the
same as used in Medel (2000). We calculated the mean
spine length of each cactus by measuring 10 spines
from the top of its columns. Every spine was measured
from the base of the areole to the tip, with a digital
caliper (precision 0.1 mm).

RESULTS AND DISCUSSION

There was a low k value in the negative binomial
distribution indicating a high level of aggregation of
T. aphyllus inflorescences on cacti (Fig. 1). We re-
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FIG. 2. The observed and expected (a) visits and (b) time
spent by Mimus thenca on Echinopsis chilensis in the presence
(control) and absence (experimentally removed) of Tristerix
aphyllus. Expected values were calculated from the total of
visits and time weighted by the relative abundance of cacti.

FIG. 3. (a) The pattern of change in the number of seeds
of T. aphyllus received by experimental and control cacti on
a daily basis (mean 6 1 SE). The first point is the number of
seeds deposited on cacti before mistletoe removal. Repeated-
measures ANOVA: treatment, F1,44 5 12.282, P , 0.001;
time, F5, 220 5 4.246, P , 0.001; time and treatment, F5, 220 5
5.853, P , 0.001. Values on the y-axis are log-transformed
(measured in seeds/d). (b) Cumulative seed deposition (mean
6 1 SE) of T. aphyllus on control and experimental cacti 171
days after initiation of the experiment. Experimental mean 6
1 SE 5 1.82 6 0.58; control, 6.23 6 1.01; one-way ANOVA,
F1, 254 5 5.416, P 5 0.021.

corded 375 visits of M. thenca to control and experi-
mental cacti after parasite removal. The number of vis-
its to each category differed from a random expectation
based on the relative abundance of experimental and
control cacti. Individuals with parasite removal were
less frequently visited than control cacti (likelihood
ratio test, G1 5 27.07, P , 0.001, Fig. 2a). Similarly,
M. thenca spent less time on experimental than control
cacti (likelihood ratio test, G1 5 1556.5, P , 0.001,
Fig. 2b), which resulted in a lower seed deposition in
experimental than control individuals (Fig. 3a). There
was a significant effect of time attributable to the seed
dispersal phenology of T. aphyllus, and the interaction
of time and treatment was also significant. Consider-
ation of cumulative seed data revealed a similar pattern.
Seed deposition onto experimental cacti was 3.5-fold
lower than in control individuals after 171 days (Fig.
3b). This result was confirmed when the number of
columns and the height of cacti were included as co-
variates (F1, 254 5 6.87, P 5 0.009). These findings
indicate that the presence of the mistletoe on E. chi-
lensis not only attracted M. thenca but increased the
chance of parasitized hosts becoming reinfected. How-
ever, the presence of the mistletoe on cacti was not the
only factor affecting seed deposition. Results from
multiple regression analysis revealed that the number
of mistletoes and spine length had significant but op-
posite effects on seed deposition (Fig. 4a,b). While a
unit increment in the number of established mistletoes
increased seed deposition by 0.196 units, a unit incre-

ment in spine length decreased seed deposition by
0.196 units, suggesting that spines not only prevent E.
chilensis from becoming parasitized but also compen-
sate for the attractive effect of established mistletoes
on seed deposition. This result corroborates previous
evidence that spines represent a defensive trait that
evolves under parasite-mediated selection (Medel
2000).

Results from this study have at least two conse-
quences for studies of host plant–parasitic plant rela-
tionships. First, McElhany et al. (1995) explored the
importance of parasite aggregation on the vector be-
havior and spread of the aphid-transmitted barley yel-
low dwarf virus. Their results indicate that vector be-
havior will not limit disease spread at low parasite ag-
gregation. However, when parasites are clumped, the
vector preference will contain disease spread. In ad-
dition, heterogeneity among host individuals in sus-
ceptibility to infection can also reduce the spread of
the infectious disease, probably because most infection
occurs on a low proportion of the host population
(Dwyer et al. 1997, Caraco et al. 2001). Our study
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FIG. 4. Effects of (a) number of inflorescences and (b)
spine length on seed deposition. Multiple regression model:
F2, 106 5 5.35, P 5 0.006; mistletoe inflorescences (standard-
ized b coefficient 6 1 SE), 0.196 6 0.094, t 5 2.07, P 5
0.040; spines (standardized b coefficient 6 1 SE), 20.196 6
0.094, t 5 2.08, P 5 0.040; test for homogeneity of slopes,
t214 5 1.987, P 5 0.048. Note that the y-axes are log scales.

indicates that level of parasite aggregation and sus-
ceptibility both affect vector behavior and seed depo-
sition. Rather than independent effects, combined ef-
fects are expected to determine mistletoe spread in this
system, because spine length and number of mistletoe
inflorescences have significant but opposite effects on
seed deposition. Second, recent evolutionary models
predict that the levels of resistance and tolerance in
host populations are contingent on the prevalence of
parasitism (Roy and Kirchner 2000). While resistance
refers to traits that prevent infection or limit its extent,
tolerance refers to traits that do not necessarily reduce
or eliminate infection, but instead reduce its fitness
consequences (Burdon 1987, Fineblum and Rausher
1995). When a host population receives low parasitism,
that is, expresses high resistance, parasites may select
for increased resistance rather than increased tolerance
to an aggregated parasite distribution. On the contrary,
when a host population shows high parasite prevalence,
that is, expresses low resistance, parasites may select
for increased tolerance rather than increased resistance.
If spines provide resistance against parasitism, most

seeds will be dispersed to a few short spine-length in-
dividuals, therefore leading to the high levels of ag-
gregation found in populations of E. chilensis. While
unequivocal demonstration of this mechanism is be-
yond the scope of this paper, it is likely that mistletoe
aggregation on E. chilensis depends on the prevalence
of parasitism and the level of resistance evolved by the
host population.

In summary, we conclude that the presence of the
mistletoe attracts the bird vector and increases mistle-
toe aggregation on the plant host species. Aukema and
Martı́nez del Rı́o (2002c) documented a similar pattern
for the desert mistletoe Phoradendron californicum,
Phainopeplas (Phainopepla nitens), and the velvet mes-
quite (Prosopis velutina). Unlike their study, however,
our results show that vector behavior was not the only
factor responsible for the aggregated mistletoe distri-
bution. The spine length of cacti compensated for the
attractive effect of the mistletoes on seed deposition,
therefore suggesting an important role for defensive
traits on parasite aggregation dynamics. Our analysis
of aggregation was performed in a single population
of E. chilensis. Our focus upon this relatively small
spatial scale reflects our intention of inferring aspects
of the seed dispersal dynamics and potential conse-
quences of aggregation for parasite and host popula-
tions at the between-host spatial scale. Infection dy-
namics and host–parasite coevolution, however, can oc-
cur across different spatial scales, as documented in
several studies (e.g., Real and McElhany 1996, Thrall
and Burdon 1997, 1999). For instance, recent geo-
graphic mosaic theory of coevolution emphasizes that
host and parasite reciprocal responses may be extreme-
ly variable across sites (see Thompson 1994, 1999,
Lively 1999). Conclusions from this study would ben-
efit from adopting a metapopulation perspective (e.g.,
Overton 1994, Aukema and Martı́nez del Rı́o 2002a),
especially if seed dispersal occurs between heavily par-
asitized hosts across distances exceeding local popu-
lations.
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