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Abstract. Plant–animal interaction networks provide important information on commu-
nity organization. One of the most critical assumptions of network analysis is that the
observed interaction patterns constitute an adequate sample of the set of interactions present
in plant–animal communities. In spite of its importance, few studies have evaluated this
assumption, and in consequence, there is no consensus on the sensitivity of network metrics to
sampling methodological shortcomings. In this study we examined how variation in sampling
completeness influences the estimation of six network metrics frequently used in the literature
(connectance, nestedness, modularity, robustness to species loss, path length, and
centralization). We analyzed data of 186 flowering plants and 336 pollinator species in 10
networks from a forest-fragmented system in central Chile. Using species-based accumulation
curves, we estimated the deviation of network metrics in undersampled communities with
respect to exhaustively sampled communities and the effect of network size and sampling
evenness on network metrics. Our results indicate that: (1) most metrics were affected by
sampling completeness but differed in their sensitivity to sampling effort; (2) nestedness,
modularity, and robustness to species loss were less influenced by insufficient sampling than
connectance, path length, and centralization; (3) robustness was mildly influenced by sampling
evenness. These results caution studies that summarize information from databases with high,
or unknown, heterogeneity in sampling effort per species and should stimulate researchers to
report sampling intensity to standardize its effects in the search for broad patterns in plant–
pollinator networks.

Key words: accumulation curves; Clench model; ecological networks; Los Ruiles National Reserve,
Chile; network size; plant–pollinator network metrics; sampling completeness; sampling effort; sampling
evenness.

INTRODUCTION

The analysis of plant–animal interaction networks has

received considerable attention in recent years, in part

because it represents a tractable way to inquire into the

complex nature of community organization. By covering

such diverse topics as the relationship between biodi-

versity and stability (e.g., Memmott et al. 2004,

Bascompte et al. 2006), ecological generalization (e.g.,

Bascompte et al. 2003, Jordano et al. 2003), interaction

syndromes (e.g., Olesen et al. 2007), assembly rules (e.g.,

Guimarães et al. 2007, Santamaria and Rodrı́guez-

Gironés 2007), conservation (e.g., Fortuna and Bas-

compte 2006, Tylianakis et al. 2010, Gonzalez et al.

2011), and phylogenetic structure (e.g., Rezende et al.

2007), among others, the analysis of plant–animal

interaction networks has provided new insights in

ecology, evolution, and conservation of communities

(see review in Bascompte and Jordano 2007). Networks

are often depicted in a matrix where columns and rows

represent animal and plant species, respectively, and the

elements are the set of the realized interactions between

the two groups. Among the most commonly used

metrics to describe the structure of plant–animal

networks are connectance, nestedness, modularity, and

robustness (reviewed in Dormann et al. 2009). Exami-

nation of metrics, and therefore of network structure, in

different ecological systems and under different ecolog-

ical scenarios has produced a significant advance in the

understanding of general properties of plant–pollinator

networks. Nevertheless, an important shortcoming of

these metrics is their sensitivity to network size, that is,

to the total number of interacting species (animals plus

plants). This scale sensitivity implies that some network

properties do not necessarily remain constant with

changes in the number of species belonging to a network

(Bersier et al. 1999, Banasek-Richter et al. 2004). For

example, it has been described that, although modularity

and robustness are largely insensitive to network size

(e.g., Dunne et al. 2002, Olesen et al. 2007), an increase

in species richness tends to decrease connectance and to

increase nestedness (e.g., Jordano 1987, Bascompte et al.
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2003). In consequence, direct comparisons among

communities need to be interpreted with caution,

especially when network metrics are presented in

unstandardized form and network size effects are not

properly controlled (Jordano 1987, Bascompte et al.

2003, Olesen et al. 2006, 2007, Almeida-Neto et al.

2007). A second methodological shortcoming relates to

the sensitivity of network metrics to sampling intensity

(Blüthgen et al. 2006, Vázquez and Aizen 2006, Nielsen

and Bascompte 2007). Even though sampling effects are

not only circumscribed to network analyses, but also

pervade most empirical studies in ecology, conclusions

of the few studies that have addressed this issue suggest

that sampling intensity does not affect all network

metrics in the same way. For example, Nielsen and

Bascompte (2007) analyzed the sensitivity of connec-

tance and nestedness metrics to variation in sampling

effort, concluding that nestedness was less prone to

sampling bias compared to the number of species and

links in the network. Similarly, Petanidou et al. (2008)

showed that estimates of the degree of specialization of

animal and plant species depend strongly on sampling

effort, and tend to be inflated in studies with limited

sampling.

There are two broad approaches to examine the effect

of sampling bias on network structure. First, some

studies have focused on the analysis of fieldwork

sampling techniques and the extent to which conclusions

are influenced by the way samples are collected. For

example, Gibson et al. (2010) analyzed the potential bias

in network metric estimates when using time-based

observations or transects. Although connectance and

nestedness did not differ between the two sampling

procedures, time-based observations tend to record a

higher number of unique interactions and lower web

asymmetries than transect samplings. In the same vein,

Bosch et al. (2009) estimated network metrics from both

a phyto- and a zoocentric perspective, concluding that

analyses that rely on pollination visitation patterns to

record interactions often tend to underestimate con-

nectance and nestedness, compared to analyses that

identify interactions according to the pollen load

transported by pollinators. Second, data manipulation

after sampling permits one to evaluate whether network

statistics are susceptible to bias because of limited

sampling or confounding variables. In this regard, two

categories of analysis can be identified in the literature:

rarefaction analysis and accumulation curve analysis.

Rarefaction analysis consists of the random removal

of an increasing number of interactions in the network,

simulating a reduction in the number of interactions

recorded (e.g., Jordano 1987, Banasek-Richter et al.

2004, Blüthgen et al. 2006, Vázquez and Aizen 2006).

This is the only available method when researchers have

no direct access to the original data set. The procedure

has the disadvantage that it does not provide informa-

tion on observations that do not record any visit to a

plant, which we call failed sampling units (FSU,

hereafter). Because by definition FSU are not incorpo-

rated into ecological network analysis (because only

interactions are recorded), the network contains neces-

sarily a fraction of the information collected. Because

FSU values provide valuable information on the time

spent by researchers to record interactions (Fig. 1), it is

necessary to include such events in estimates of potential

bias attributable to limited sampling effort.

Accumulation curve analysis consists of the recording

of new species (or interactions) for a community as a

function of increased sampling effort (e.g., Nielsen and

Bascompte 2007, Jordano et al. 2009, Chacoff et al.

2011). Unlike rarefaction analysis, this approach re-

quires direct access to the original data set. In the

context of network analysis, species accumulation curves

(or sample-based rarefaction curves; sensu Colwell et al.

2004) permit estimation of the expected number of

species or interactions as a function of the number of

observations (see Fig. 1c). When the accumulation curve

reaches an asymptote, it means that increasing sampling

effort will not increase the number of species or

interactions recorded (Colwell et al. 2004). To evaluate

sampling completeness, it is possible to calculate how far

the observed curve is from the expected asymptotic

value. Asymptote estimation may be performed by

fitting the observed accumulation curve to an asymp-

totic parametric model (Soberón and Llorente 1993), or

through a nonparametric estimator (e.g., Chao 2; see

Chacoff et al. 2011).

Accumulation curves may be useful descriptors of

sampling completeness for both species and interaction

levels. One shortcoming of accumulation curves based

on interactions, however, is that the number of

interactions can reach an asymptote even though some

plant species have been undersampled for pollinator

species. This phenomenon may occur when the sampling

effort is highly heterogeneous (i.e., low sampling

evenness). Poorly sampled plant species would thus be

associated with one or a few pollinator species,

overestimating the presence of specialists, inflating some

network metrics such as nestedness, and deflating others

such as connectance (Vázquez and Aizen 2006, Blüthgen

et al. 2008). This inconvenience may be overcome by

using accumulation curves on a per plant species basis to

evaluate the sampling completeness of the pollinator

assemblage visiting each plant species (e.g., Chacoff et

al. 2011). This analysis has some advantages: (1) it is

commensurate to the scale where observations are

performed (i.e., the plant species); (2) it permits

quantification of the heterogeneity in sampling effort

among plant species; and (3) it permits assessment of

levels of generalization–specialization among plant

species in relation to interspecific differences in visitation

rates (e.g., Herrera 2005). In this study we use species-

based accumulation curves to examine the sensitivity of

six widely used network metrics to variation in sampling

completeness per plant species in 10 plant–pollinator

networks. More specifically, we attempt to answer the
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following questions. (1) Does sampling completeness

influence network metric estimates? (2) Which metrics

are more robust to variation in sampling completeness?

(3) To what extent is the effect of sampling completeness

on network metrics influenced by the number of species

in the network and by sampling evenness?

MATERIALS AND METHODS

Fieldwork and sampling procedure

This study was conducted in an area near Los Ruiles

National Reserve (358500 S, 728300 W), a reserve aimed

to protect a rare and endemic deciduous forest in the

coastal range of central Chile. The Ruil forest is a highly

fragmented ecosystem distributed along 100 km of the

coastal range in central Chile (35–368 S latitude)

(Bustamante and Castor 1998). Currently, the landscape

is a mosaic in which the original forest has been almost

completely substituted by plantations of Pinus radiata

(Monterrey pine), an exotic tree originally from

California. The dominant species are the caducifolious

broad-leaved trees Nothofagus alessandrii and N. glauca

living with other subdominant evergreen trees such as

Cryptocarya alba, Aetoxicum punctatum, and Gevuina

avellana, among others (San Martin et al. 1984). Our

study focused on 10 fragments of native forest ranging

from 5.6 to 49.3 ha. Sampling of species and interactions

was performed during the austral spring and summer

seasons, when most flowering occurs in the study

system. Fieldwork was carried out during September

2007 through February 2008 and September 2008

through February 2009. On average, there were 85.8 6

11.8 plant species per fragment (mean 6 SD; range 67–

103) and 146.4 6 21.0 pollinator species per fragment

(mean 6 SD; range 113–189). Observations were

performed by 3.8 persons/day, on average, and always

on sunny days. The sampling procedure consisted of

recording the flower visitors to plants during a 10-min

FIG. 1. Hypothetical example representing the overall procedure used in the study of plant–animal networks, and the
methodology used in this study. (a) Observed interactions between plant species (1, 2, 3) and animal species (A, B, C). The number
of time-based recordings for each interaction, including the null interactions (i.e., observations with no pollinator detected, 0’s), is
depicted in the first column. (b) Interaction matrix using the recordings in panel (a): the total numbers (R) of interactions for every
plant and animal species, and the total number of interactions recorded (m). Because null interactions (failed sampling; i.e., no visits
observed) are not included in the interaction matrix, the total sampling time (Ts) is not congruent with the number of interactions
recorded (m). (c) Species accumulation curve for plant species 1. The curve shows the number of pollinator species observed (So) at
increasing sampling effort. If the curve reaches an asymptote, it implies that the sampling effort is adequate to record the whole
pollinator assemblage. The Clench asymptotic model is shown by the dashed line (see Analyses of sampling effort for details). (d) By
adjusting the accumulation curve (So, lower curve) to the asymptotic models, it is possible to estimate the maximum number of
pollinators expected (Se, upper curve) and sampling completeness, that is, the fraction of the expected pollinator assemblage that is
recorded (So/Se).

July 2012 1595SAMPLING EFFECTS ON MUTUALISTIC NETWORKS



observation period (see Plate 1). Observations on plant

species were performed at random according to their

abundance in the study site. Overall, there were 1390 6

232 time-based observations per fragment (mean 6 SD;

range 1215–2004; n ¼ 10 observation periods), equiva-

lent to 231 hours of observation per fragment. Only

insect species that contacted the anthers or stigma of

flowers or entered the flower tube were considered as

legitimate visitors. We collected insects in the first year

of the study for subsequent taxonomic identification in

the laboratory. In total, we identified 186 flowering plant

species and 336 pollinator species in the overall system.

Analyses of accumulation curves and subsequent fitting

to the Clench asymptotic model revealed that our

sampling effort captured 96.9% of the expected plant

species richness (observed number of species, So ¼ 186;

expected number of species, Se ¼ 192; fit to Clench’s

model: r2 ¼ 0.99) and 96.3% of the expected pollinator

species richness in the global system (So¼ 336, Se¼ 349;

r2 ¼ 0.99).

Analyses of sampling effort

To investigate how sampling effort influences network

metrics, we used species-based accumulation curves for

the number of pollinator species visiting each plant

species. We calculated accumulation curves for every

plant species, including replicated analyses for the same

plant species in different sites. In total, we analyzed 687

species-based curves. For each accumulation curve we

estimated the mean and standard deviation from 100

random permutations of the data (Gotelli and Colwell

2001). The maximum number of pollinators at the

asymptote of each accumulation curve was estimated

through two different asymptotic models. (1) The

Clench model, a modification of the Michaelis-Mentel

equation, is defined as S(t)¼ at/(1þ bt); it is appropriate

when the probability of adding new species decreases

with the number of time-based observations (Soberón

and Llorente 1993). (2) The negative exponential model

is defined as S(t)¼ (a/b)[1� e�bt]. In the two models, S(t)

represents the predicted number of species at sampling

effort t (Fig. 1c), a is the rate of increase at the beginning

of the sampling, and b is a fitted constant that controls

the shape of the curve. In both cases, when t ! ‘, S(t)

! a/b. In consequence, the expected number of

pollinator species in the asymptote (Se) was calculated

as Se¼a/b (Soberón and Llorente 1993). To estimate the

parameters a and b, the functions must be adjusted to

the observed accumulation curves through a nonlinear

estimation procedure. We used the Gauss-Newton

algorithm for parameter estimations (Fletcher 2000).

The model that showed the best fit to the observed data,

as evaluated by Akaike’s information criterion, was

selected for subsequent analyses (Fox 2002).

Once we estimated the expected number of pollinators

per plant species at the asymptote, the sampling

completeness (SC) for each plant species was calculated

as SC ¼ So/Se, where So is the observed number of

species and Se is the maximum number of species

expected according to the model (Fig. 1d). Based on

their sampling completeness, the plant species from each

site were assigned to one of five SC categories: 0–0.30,

0.31–0.50, 0.51–0.70, 0.71–0.90, and 0.91–1.00. For

example, subnetworks in the category 0.31–0.50 of

completeness include those plant species for which 31–

50% of the pollinator species expected by the asymptotic

model were recorded. The width of categories was

determined by finding the combination of ranges that

provided the lowest variation in the number of plant

species across categories. Finally, we calculated network

statistics for the set of species belonging to the same SC

category, totaling five subnetworks per fragment.

Because the same procedure was repeated for the 10

fragments here analyzed, our database consisted of 50

subnetworks, 10 per sampling completeness category. A

summary of network characteristics per sampling

category is shown in Table 1.

Colwell and Coddington (1994) reviewed diverse

estimators of species richness in samples, concluding

that parametric estimators are not necessarily indepen-

dent of the number of samples, especially in small

sample sizes. The authors found that Chao 2 and

Jackknife estimators provide the least biased estimators

for a small number of samples. To ensure that the

parametric procedure used in this study does not

underestimate species richness at small sample effort

categories, we examined the covariation of the expected

maximum species richness under Clench’s model and

Chao 2 procedure with ANCOVA, using sampling

completeness categories as treatment effect. All variables

were log-transformed. Results revealed an overall

association between estimates (F1, 384 ¼ 211.08, P ,

0.001, b ¼ 1.099 6 0.075, mean 6 SE) and lack of

sampling completeness effect (F4, 384¼ 1.558, P¼ 0.185).

The slopes for the different sampling categories did not

differ (F4, 383 ¼ 0.927, P ¼ 0.448). Overall, these results

indicate that both procedures provide about the same

richness estimates, thus validating use of the parametric

procedure in this study.

Network metrics estimation and statistical analyses

We calculated the effect of sampling completeness on

six frequently used network metrics:

1) Connectance (C ), the proportion of possible links

actually observed in a web, with values from 0 to 1.

In bipartite networks it is calculated as C¼ I/(P3A),

where I is the number of interactions, P is the number

of plant species, and A is the number of animal

species in the network. Connectance is often consid-

ered a measure of network complexity and redun-

dancy (Jordano 1987, Bascompte and Jordano 2006).

2) Nestedness (N ), representing one kind of asymmetry

of interactions, characterized by a core of highly

connected species (generalists) that interact mainly

with each other, and a group of specialist species that
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interact mainly with the generalist species (Bas-

compte et al. 2003). We used the NODF (nestedness

based on overlap and decreasing fills) algorithm

proposed by Almeida-Neto et al. (2008), which,

unlike previous metrics, corrects for matrix dimen-

sionality (Ulrich et al. 2009). NODF values of 0 and

100 indicate lack of nestedness and perfect nesting,

respectively.

3) Modularity (M ), providing information on the

existence of groups composed of strongly interactive

species that interact weakly with species belonging to

other modules (Guimerà and Amaral 2005). Diverse

algorithms have been suggested to estimate modu-

larity (see Olesen et al. 2007). Here, we used the

spinglass algorithm (Reichardt and Bornholdt 2006).

M can take values between 0 and ;1, and reaches its

maximum when all network interactions are within

modules and no link exists among modules.

4) Average path length (L), defined as the average

number of steps along the shortest paths for all

possible pairs of species in the network, or the fewest

number of steps required to connect species i with

species j, averaged for all pairs of species (Albert and

Barabasi 2002, Olesen et al. 2006). Although not

frequently used in studies of mutualistic networks

(but see Lundgren and Olesen 2005, Olesen et al.

2006, Bezerra et al. 2009), this metric provides

important information on network cohesiveness.

Low L values are associated with high levels of

species cohesion, a property characteristic of ‘‘small-

world’’ systems (Albert and Barabasi 2002).

5) Centralization (E), which permits identification of

central species around which peripheral species are

assembled. We calculated E as eigenvalue centrality

(Bonacich 1972), defined as the principal eigenvalue

of the adjacency matrix of a network, with values

between 0 and ‘. Eigenvector centrality assigns a

value to each species in the network. A species

receives a high E value if it is strongly correlated with

many other species that are themselves central within

the network. The presence of central nodes confers

high network cohesion or information flow (Borgatti

and Everett 1997).

6) Robustness (R), providing information on the

resilience of networks to losing species, based on

the concept of the attack tolerance curve (Albert and

Barabasi 2002). Curves are constructed by sequen-

tially removing plant or animal species without

replacement. After each species removal (e.g.,

pollinators), the number of species in the other

group (e.g., plants) that remain in the network is

calculated. The curve indicates the fraction of species

remaining according to the fraction of removed

species in the alternative group. The area under this

curve (values between 0 and 1) corresponds to the

resilience level of the overall system (Burgos et al.

2007). If the decay curve is concave (R , 0.5),

removing a small fraction of species produces a high

number of secondary extinctions. If the curve is

convex (R . 0.5), the network is highly robust. In

this study, we used a random species removal

criterion, and estimated independently the robust-

ness after plant removal (Rp) and animal removal

(Ra).

Because the sensitivity of metrics to sampling

completeness may vary depending on the number of

species in the network (network size) and sampling

evenness (the homogeneity of sampling effort among

plant species), we examined the pattern of covariation of

these variables with network metrics. The network size

within sampling completeness categories was calculated

as the sum of the plant and animal species belonging to

the interval. To quantify the heterogeneity of sampling

effort among plant species, we used an evenness index

(J 0
obs ) based on Shannon diversity (Blüthgen et al. 2008).

J 0
obs approaches 0 when sampling effort distribution is

highly heterogeneous, and approaches 1 when sampling

effort is homogeneously distributed among species. We

TABLE 1. Network summary statistics (mean 6 2 SE) for the 50 subnetworks at Reserva Nacional Los Ruiles, Chile, 2007–2008.

Network characteristics

Sampling completeness category

0–0.30 0.31–0.50 0.51–0.70 0.71–0.90 0.91–1.00

Sampling completeness per species, SC 0.15 6 0.08 0.41 6 0.06 0.60 6 0.04 0.80 6 0.06 0.97 6 0.02
Sampling evenness, J 0

obs 0.88 6 0.03 0.95 6 0.04 0.93 6 0.03 0.92 6 0.03 0.88 6 0.03
Network size, S 78.0 6 13.3 36.9 6 6.3 49.6 6 8.5 81.0 6 13.8 83.8 6 14.3
Network asymmetry, NA 1.42 6 1.20 5.24 6 1.20 5.29 6 1.20 6.33 6 1.19 8.49 6 1.19
Number of plant species, P 32.4 6 1.2 6.9 6 1.5 8.0 6 1.2 10.8 6 1.3 10.0 6 1.9
Number of animal species, A 45.1 6 1.2 29.9 6 1.5 41.3 6 1.4 70.1 6 1.3 71.2 6 1.2
Number of interactions, I 63.2 6 4.5 92.2 6 8.3 93.7 6 6.6 105.7 6 8.1 93.7 6 7.2

Notes: N¼ 10 subnetworks per sampling completeness category. The sampling completeness per species (SC), the fraction of the
expected pollinator assemblage that is recorded, was calculated from accumulation curves as SC¼ So/Se, where So is the observed
number of species and Se is the expected number of species in the asymptote of Clench or exponential models. For example,
subnetworks in the category SC¼ 0.31–0.50 include those plant species for which 31–50% of the pollinator species expected by the
asymptotic model were recorded. Sampling evenness (J 0

obs ) quantifies the heterogeneity of sampling effort among plant species.
When J 0

obs approaches 0, the effort distribution is highly heterogeneous among species; when J 0
obs approaches 1, the sampling effort

is homogeneously distributed among species. The network size (S ) within sampling completeness categories was calculated as the
sum of the plant (P) and animal (A) species belonging to the interval. Network asymmetry (NA) was calculated from the ratio (A/
P).
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analyzed the effect of sampling completeness on the

metric of interest with a one-way ANCOVA, using the

completeness category of 0.91–1.00 as reference for

comparisons and network size and sampling evenness as

covariates. A posteriori contrasts were performed using

Tukey HSD. All analyses were performed in R version

2.10 (R Development Core Team 2009) and associated

modules: car version 1.2–16 (Fox 2002), vegan version

1.15–4 (Oksanen et al. 2009), igraph version 0.5.3

(Csardi and Nepusz 2006) and bipartite version 1.06

(Dormann et al. 2008), all available online.5

RESULTS

The exponential asymptotic model provided the best

fit in 495 accumulation curves (72% of cases). The

number of observations per species was variable in the

overall system (mean: 26 time-based observations per

species, range: 1–283). In spite of this, when data were

analyzed at the subnetwork scale, the mean sampling

evenness, 0.91 6 0.05 (mean 6 SD), was greater than

those reported for other pollination networks (0.67 6

0.14, n ¼ 21 networks; see Blüthgen et al. 2008),

indicating that the species belonging to our sampling

completeness categories were more homogeneously

sampled than commonly reported. The mean complete-

ness of subnetworks did not relate to sampling evenness

(F1,48¼ 0.34, R2¼ 0.007, P¼ 0.560), suggesting that the

heterogeneity in the number of time-based observations

among species was associated with the distribution of

abundance rather than with variation in sampling effort

(Vázquez and Aizen 2006). Network size in the 50

subnetworks was 65.2 6 24.3 species (mean 6 SD), and

the animal/plant ratio (network asymmetry) was 5.35 6

2.92 (mean 6 SD). The A/P ratio (network asymmetry)

ranged from 1.4 in the category with the lowest sampling

completeness (0–0.30) to 8.5 in subnetworks containing

the best-sampled plant species (0.91–1.00), indicating

that well-characterized networks tend to present a

higher asymmetry in the number of interactive species

than low-sampled networks (see Table 1).

Connectance values differed among completeness

categories, showing an overall increase toward higher

values of sampling completeness (Table 2, Fig. 2a).

Subnetworks with species belonging to the three

categories with lowest completeness (ranging from 0 to

0.70) showed low connectance values and differed

statistically from the best-sampled subnetworks (Fig.

2a). Because by definition connectance values result

from the number of observed interactions relative to the

number of potential interactions (C¼ I/P3A), it follows

that an increase in connectance will result from an

increased number of recorded interactions with respect

to the total number of species recorded. In fact, the

number of interactions (I ) increased with sampling

effort as expected (F1,48 ¼ 14.8, R2 ¼ 0.22, P , 0.001).

Network size, i.e., the total number animal and plant

species within a network, was a significant covariate that

related inversely to network connectance (Table 2), as

shown in several analyses of plant–pollinator networks

(Bascompte and Jordano 2007). Sampling evenness, by

contrast, showed no relationship with connectance

(Table 2; P ¼ 0.766), indicating that this metric, one of

the most important descriptors of network structure,

was largely insensitive to the heterogeneity of sampling

effort among plant species.

Nestedness values differed among sampling categories

and tended to increase with sampling completeness (Fig.

2b). The only nestedness value differing from the

reference was observed in the SC category 0–0.3, where

nestedness was underestimated by 78% with respect to

the best-sampled category. Our findings are consistent

with previous conclusions that nestedness tends to

stabilize quickly with increasing sampling effort (Nielsen

and Bascompte 2007). In this study, nestedness values

increased with network size, as revealed by the

significant covariate effect (Table 2; P , 0.001).

Regarding sampling evenness, our results did not show

influence of heterogeneity of sampling effort on nested-

ness (Table 2). It has been suggested that incomplete and

heterogeneous samplings overestimate specialist interac-

tions and underestimate generalist interactions (Blüth-

gen et al. 2008, Dorado et al. 2011). However, our

TABLE 2. Summary of ANCOVA results for sampling completeness on network metrics.

Network metrics
Sampling completeness

Network size Sampling evenness

R2F4,43 F1,43 Trend F1,43 Trend

Connectance, C 34.77*** 13.57*** � 0.09 0 0.79
Nestedness, NODF 26.67*** 16.92*** þ 1.87 0 0.70
Modularity, M 30.87*** 0.44 0 0.05 0 0.72
Robustness to plant loss, Rp 1.76 21.58*** þ 4.92* þ 0.63
Robustness to animal loss, Ra 26.62*** 0.86 0 5.24* þ 0.73
Path length, L 26.62*** 0.52 0 0.65 0 0.72
Centralization, E 43.53*** 43.53*** þ 1.26 0 0.61

Notes: Network size and sampling evenness were used as covariates in every analysis. Symbols þ and � indicate positive and
negative patterns of covariation with sampling completeness, respectively. Symbol 0 indicates absence of significant covariation.
Network size, connectance, mean path length, and centralization values were log-transformed before analysis. Boldface indicates
values that retain significance after Bonferroni adjustment.

* P , 0.05; ** P , 0.01; *** P , 0.001.

5 www.r-project.org

A. RIVERA-HUTINEL ET AL.1598 Ecology, Vol. 93, No. 7



results suggest that the NODF nestedness metric is

robust to heterogeneous sampling and shows deviations

only at very low sampling effort. In consequence, the

NODF metric seems to be more appropriate than

temperature-based nestedness, as suggested by Almei-

da-Neto et al. (2008) and Ulrich et al. (2009).

Mean modularity differed among categories and

showed a tendency to decrease with sampling complete-

ness (Table 2), which suggests that detection of

modularity in undersampled networks may represent

an artifact associated with insufficient sampling effort.

The only category showing a modularity level different

from the sampling reference was that in the lowest

sampling completeness (Fig. 2c). In principle, low-

sampled communities will record a limited number of

links, which may result in a pattern of low-connected

modules that inflates network modularity in comparison

to better-sampled communities. Neither network size

FIG. 2. Network metric profiles across sampling completeness categories (the fraction of the expected pollinator assemblage
that is recorded, an indicator of sampling effort). All metric values are corrected by network size and sampling evenness. Bars
around means are 95% confidence intervals from 10 subnetworks contained in completeness intervals. Network metrics include (a)
connectance, (b) nestedness, (c) modularity, (d) network robustness to the loss of animal (solid circles) and plant (open circles)
species, (e) mean path length, and (f ) centralization. The values provided by the most intensively sampled category (0.91–1.00
completeness as revealed by species-based accumulation curves) were used as reference for statistical comparisons in one-way
ANCOVA.

* P , 0.05; *** P , 0.001.
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nor sampling evenness influenced modularity, as re-

vealed by the nonsignificant covariation of variables in

ANCOVA (Table 2; P ¼ 0.511 and P ¼ 0.824,

respectively). In general, modularity showed a robust

pattern to variation in sampling effort.

The robustness to animal loss (Ra¼0.82 6 0.10, mean

6 SD) was greater than the robustness to plant loss (Rp

¼ 0.61 6 0.04) (t98 ¼ 13.69; P , 0.001; Fig. 2d),

indicating that animal and plant species removal had

different effects on network resilience. More specifically,

networks were more resilient when animals were

removed, in part because the number of animal species

exceeded the number of plant species in the overall

system (336 vs. 186 species, respectively), and the effect

of species loss may be more easily compensated in the

animal rather than plant species assemblage. Regarding

the effect of variation in sampling completeness, our

results indicate that, except for the low robustness to

animal loss detected at very low sampling effort (below

0.30 completeness), where networks were 23% less

resilient than the reference value (Fig. 2d), sampling

effort had a small impact on network resilience.

Network size influenced only the robustness to plant

loss (Table 2). The increased resilience of plant species to

increasing network size probably results from the

numerical asymmetry between animal and plant species.

If robustness estimates are influenced by the total

number of species used in analyses, networks composed

of a low number of plant species will show a low

robustness because only a few plant deletions are

required to remove many pollinator species, leading to

an overall system destabilization. In consequence, any

increase in the number of plant species will have a

disproportional effect on plant redundancy, turning the

network more robust to plant species loss. On the other

hand, if the high number of animal species implies a high

redundancy in the plant species with which they interact,

any increase in the number of animal species will have a

negligible impact on the already high network resilience.

Regarding sampling heterogeneity, our results did not

show a clear effect on network robustness. Although

both Rp and Ra tended to increase with sampling

evenness, the statistical significance disappeared after

Bonferroni adjustment (Table 2).

Mean path length (L) and centralization (E) metrics

were highly sensitive to sampling effort. Values of L and

E calculated from subnetworks containing species with

completeness lower than SC¼ 0.70 differed significantly

PLATE 1. Plant–pollinator interaction between the solitary bee Manuelia postica (Apidae, Xilocopinae) and Olsynium junceum
(Iridaceae) at Los Ruiles Natural Reserve, Chile. Photo credit: R. Medel.
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from the best-sampled subnetworks (Fig. 2e and f,

respectively). In general, increased sampling complete-

ness conferred high network cohesion, as revealed by the

decreasing mean path length and increasing centraliza-

tion values toward higher categories of sampling

completeness. Because more interactions are recorded

in well-sampled communities, species will be more

connected, on average, which implies that a lower

distance is necessary to connect pairs of interacting

species. Similarly, the greater number of interactions

recorded in well-sampled communities will increase the

importance of generalist species in determining network

cohesiveness. ANCOVA results indicate that centraliza-

tion, but not average path length, was influenced by

network size (Table 2), suggesting that the importance

of generalist species for network cohesion tends to

increase in large-sized communities. Neither path length

nor centralization was affected by sampling evenness.

DISCUSSION

Except for the robustness to plant loss, all of the

network metrics examined here were sensitive to some

extent to sampling effort. The most sensitive metrics

were connectance, path length, and centralization, which

gave underestimated values below sampling complete-

ness of 0.7 (Fig. 2a, e, f ). Nestedness, modularity, and

robustness to animal loss were the most robust metrics,

differing from well-sampled communities only in those

subnetworks with plant species showing ,30% of the

expected pollinator assemblage (Fig. 2b–d). Although

nestedness and robustness to animal loss showed

underestimated values in the lowest sampling interval,

modularity was overestimated by almost 40% (Fig. 2c).

Regarding network size effects, our results varied

depending on the network metric under assessment.

For example, connectance, robustness to animal loss,

and centralization showed high sensitivity to variation in

network size, but nestedness, modularity, robustness to

plant species loss, and path lengths were not affected.

Effects of sampling evenness were less prevalent in our

analysis. The only metrics influenced by the heteroge-

neity of sampling effort among plant species were those

related to robustness (Table 2). Specifically, our results

indicate that communities where sampling effort is more

homogeneously distributed among plant species will

show a higher robustness to species loss.

Our results assume that the most important cause

responsible for metric behavior across sampling effort

categories is sampling completeness per plant species.

However, subnetworks belonging to the same sampling

category may include species that share biological

properties such as phenology and floral characters,

among other variables, which might account, in part, for

the overall pattern. We examined this possibility by

comparing the similarity in species composition, as

estimated by Jaccard’s index, among and within

sampling categories. Subnetworks within sampling

categories were more similar in plant species composi-

tion than those belonging to different sampling catego-

ries (ANOSIM test with 1000 permutations, F4,45¼ 2.24,

P , 0.001). To gain insight into the factors influencing

similarity in species composition, we used partial Mantel

tests to examine whether the correlation in the sampling

completeness distance was accounted for by sampling

effort (number of time-based observations per plant

species), taxonomic distance (phenotypic overlap), or

phenology distance (temporal overlap). The statistical

significance of such correlations was assessed by 1000

permutations. Our results indicate that variation in

sampling completeness was accounted for by sampling

effort (rm ¼ 0.327, P ¼ 0.001) but not taxonomy (rm ¼
�0.012, P ¼ 0.759) and phenology (rm ¼ �0.001, P ¼
0.509). These results suggest that similarity in species

composition within categories was accounted for by the

relative abundance of species in the overall system,

which in turn influenced the sampling effort received by

each plant species, rather than by taxonomic and

phenological factors.

The aim of this study was to examine the extent to

which a number of frequently used network metrics are

influenced by sampling intensity, network size, and

sampling evenness. Although other studies have previ-

ously evaluated the effect of network size on the

structure of plant–animal relationships (e.g., Jordano

1987, Ollerton and Cranmer 2002, Blüthgen et al. 2006,

Vázquez and Aizen 2006, Almeida-Neto et al. 2007,

Nielsen and Bascompte 2007), studies examining the

contribution of different sources of bias to network

metric estimates have been notoriously absent in the

plant–pollinator literature. Even though species-based

accumulation curves have been used to examine the

impact of sampling effort on single network metrics

(e.g., nestedness as in Nielsen and Bascompte 2007) and

the level of generalization of individual plants in

populations of single species (e.g., Herrera 2005), this

is the first study using species-based accumulation curves

to evaluate the behavior of network descriptors to

variation in sampling effort in plant–pollinator net-

works.

Regarding the effect of network size on network

metrics, there is an important conceptual distinction

between our descriptive approach and scale–variance

analysis. It is one thing to state that a given metric is

statistically sensitive to variations in network size (or

any other aspect of network structure), which is often

examined using random matrices and investigating how

the values recorded for a given metric vary with network

size (e.g., Bersier et al. 1999, Vázquez and Aizen 2006,

Ulrich et al. 2009). It is another thing to state that a

given pattern has scale variance, which is often analyzed

by examining the statistical relationship of a metric with

network size at different ranges of network size, often

implying an underlying biological process (e.g., Marti-

nez 1992). In this work, we have described the statistical

sensitivity of network metrics to sampling effort,

keeping constant network size and sampling evenness.
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Because we do not know the statistical behavior of most

network metrics in response to network size, we cannot

ascribe causality to the network size dependency shown

by the metrics here analyzed (Table 2).

Results from this study have important consequences

for the way in which field studies on plant pollinator

should be designed. Because network metrics have

different sensitivities to sampling effort and network

size, studies having low sampling effort need to be

interpreted with caution. For instance, although nested-

ness, modularity, and robustness to species loss seem to

be robust estimators that show bias only at very low

sampling effort, conclusions on connectance, average

path length, and centralization may be more sensitive to

low sampling because they rely directly on the number

of interactions recorded. The lack of effect of sampling

evenness on most metrics suggests that heterogeneous

sampling effort across plant species is likely to have a

small influence on network metric biases. In conse-

quence, the reliability of network metrics may be

independent of whether sampling is homogeneous (i.e.,

a fixed an equal number of time-based observations per

plant; Lundgren and Olesen 2005) or random (i.e.,

recordings proportional to the relative abundance of

plant species, such as in this study) across species.

By identifying the network metrics most sensitive to

sampling effort, our results provide a baseline from

which to overcome the inherent sampling limitations of

most empirical studies. For instance, consideration of

additional variables such as the phenology of species

(e.g., Olesen et al. 2008, Petanidou et al. 2008), pollen

load (e.g., Bosch et al. 2009), pollen limitation (e.g.,

Power and Stout 2011), species abundance (e.g.,

Vázquez and Aizen 2006), invasion status of interacting

species (e.g., Aizen et al. 2008, Vilà et al. 2009), and

other factors may help to provide more complete

descriptions of plant–pollinator networks. We strongly

encourage researchers to document sampling effort

using accumulation curves at either network or species

levels. This information will permit standardization of

network metrics to variation in sampling procedures and

control of such effects in the search for broad patterns in

plant–pollinator networks.
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specialization in species interaction networks. BMC [Bio Med
Central] Ecology 6:9.

Bonacich, P. 1972. Factoring and weighting approaches to
status scores and clique identification. Journal of Mathemat-
ical Sociology 2:113–120.

Borgatti, S. P., and M. G. Everett. 1997. Network analysis of 2-
mode data. Social Networks 19:243–270.

Bosch, J., A. M. Martı́n González, A. Rodrigo, and D.
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