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G. L. Stebbins’ most effective pollinator principle states that when pollinators
are not limiting, plants are expected to specialize and adapt to the most abun-
dant and effective pollinator species available. In this study, we quantify the
effectiveness of bees, hummingbirds and hawkmoths in a Chilean population
of Erythranthe lutea (Phrymaceae), and examine whether flower traits are sub-
ject to pollinator-mediated selection by the most effective pollinator species
during two consecutive years. Unlike most species in the pollinator commu-
nity, the visitation rate of the recently arrived Bombus terrestris did not
change substantially between years, which together with its high and stable
pollen delivery to flower stigmas made this species the most important in
the pollinator assemblage, followed by the solitary bee Centris nigerrima.
Flower traits were under significant selection in the direction expected for
short-tongue bees, suggesting that E. lutea is in the initial steps of adaptation
to the highly effective exotic bumblebee. Our results illustrate the applicability
of Stebbins’ principle for new invasive pollinators, and stress their importance
in driving flower adaptation of native plant species, a critical issue in the face of
biotic exchange and homogenization.

1. Introduction
From the early outstanding predictions including the hawkmoth with the extra-
ordinary tongue capable of sipping nectar from the 30 cm long Malagasy star
orchid tube [1], the metrical match between flower traits and suitable body
parts of pollinator species has been considered as one of the most remarkable
examples of fine-tuned adaptations moulded by natural selection (e.g. [2–4]).
This high level of specialization is expected to evolve in plants subject to selection
by abundant and effective pollinators, that is, by those pollinator species that con-
tribute most to the mean plant population fitness. This hypothesis, known as the
‘most effective pollinator principle’ after Stebbins [5], highlights the two key com-
ponents of pollinator activity that determine high levels of flower adaptation to
pollinators—the frequency and effectiveness of flower visits. When these criteria
are not satisfied, plants are expected to evolve generalist strategies, and lack of
specialization to the most effective pollinator is expected. Most studies have
hitherto examined plant adaptation and specialization in native pollination sys-
tems, where pollinators and plants have a long history of interaction [6–9].
However, the arrival and establishment of exotic pollinator species in local ecosys-
tems may quickly shift plant traits toward new optimal states, provided exotics
become more abundant and effective than native pollinators.

In this study, we examine Stebbins’ principle in an Andean plant–pollinator
community, where bees, hummingbirds and hawkmoths converge in the use of
the Andean monkeyflower, Erythranthe lutea (Phrymaceae). In doing so, we
recorded their visitation rate and the number of pollen grains deposited on
virgin stigmas to estimate their effectiveness. As floral traits involved in the attrac-
tion and mechanical fit with effective pollinators are expected to be under
pollinator-mediated selection, we estimated selection coefficients on flower tube
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length and corolla size, two floral traits often under pollinator-
mediated selection [8–10].

2. Material and methods
(a) Natural history and study site
This study was performed in Juncal (328510 S, 708080 W, 2398 m
elevation, Chile), during two consecutive summer seasons
(2016 and 2017). Erythranthe lutea is a perennial self-compatible
herb inhabiting streams and wetlands from sea level to 3650 m
between 298 and 458 S. Even though E. lutea is self-compatible,
pollen vectors are needed to ensure successful fertilization [10].

(b) Pollinator assemblages, pollen limitation and pollen
deposition effectiveness

We recorded the mean visitation rate (VR) per pollinator species in
both years. The pollen deposition effectiveness per single visit
(Dv), that is, the number of pollen grains delivered by flower visi-
tors onto virgin stigmas, was recorded by removing and storing
the stigmas just visited by a pollinator in vials containing 70% etha-
nol. Once in the laboratory, after fixation and staining, the number
of pollen grains was recorded under a binocular microscope. The
pollen deposition effectiveness per unit time (Dt) for every pollina-
tor species was calculated by multiplying VR, Dv and r, r being the
proportion of flowers having receptive stigmas. All the field
measurements were performed in the morning in a patch approxi-
mately 50 m2. To maximize the number of virgin stigmas, all the
flowers in anthesis were removed from the patch the night before
measurements, leaving only flower buds to the next morning. In
consequence, we observed first-day opened flowers and the frac-
tion of receptive flowers at the time of observation (r) was
always 1 [11]. For the purposes of this study, the index Dt is appro-
priate as it encapsulates in one single measure the two most
important factors involved in Stebbins’ principle, the frequency
of visits and pollinator effectiveness.

The most effective pollinator principle states that flower evol-
ution towards the most efficient pollinator may occur when pollen
is not limited in the environment. We evaluated this criterion by esti-
mating the pollen limitation index (L): L ¼ 1 2 (C/S), where C and S
are the number of seeds produced by naturally pollinated flowers,
and by flowers manually supplemented with an excess of pollen,
respectively. Values near to zero indicate absence of pollen limit-
ation in the environment. Detailed information on procedures
can be found in the electronic supplementary material.

(c) Phenotypic selection
We estimated the selection coefficients of putatively functional
flower traits by randomly choosing 100 plants per year and recording
the mean tube length (mm) and mean corolla size (mm2) from three
flowers per plant (electronic supplementary material, figure S1). At
the same time when flower traits were measured, we collected
three capsules from the same plant and their seed number was
recorded in the laboratory to have a fitness estimate through the
female sex function. The strength of pollinator-mediated selection
acting upon floral traits was estimated from linear selection gradients
using the multiple regression approach of Lande & Arnold [12] (see
electronic supplementary material for more information).

3. Results
(a) Pollinator assemblages and visitation rate
The composition of pollinator assemblages was relatively
similar between years (62.5% similarity). However, when

visitation rate was included in the analysis, similarity
decreased to 25%, CI: 2–52% (see electronic supplementary
material). This decrease was determined to a large extent
by the change in visitation rate of the solitary bee Centris
nigerrima, the hummingbird Oreotrochilus leucopleurus and
the hawkmoth Hyles annei (figure 1 and table 1). Besides
native pollinators, the exotic bumblebee Bombus terrestris
has been present in the site at least since 2009, showing an
increasing abundance over the years (figure 2a), as is usually
observed for invasive species in the first stages of the estab-
lishment process [14,15]. This bumblebee presented a more
stable pattern, making 2.06+ 5.46 and 2.67+7.31 (mean+
s.e.) visits per flower per hour in 2016 and 2017, respectively
(figure 1a and table 1).

(b) Pollen limitation, pollination effectiveness
and natural selection

The pollen limitation index was low in the two years (2016:
L ¼ 0.28; 2017: L ¼ 0.34) (electronic supplementary material,
table S1), indicating that pollinator availability was not
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Figure 1. Mean visitation rate (s.e.) of (a) Bombus terrestris, (b) Centris niger-
rima, (c) Oreotrochilus leucopleurus and (d ) Hyles annei on the Andean
monkeyflower, Erythranthe lutea, during the flowering seasons of 2016
(104 h of observation) and 2017 (138 h of observation). Credit for photo-
graph of H. annei: J. P. de la Harpe.
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Table 1. Mean visitation rate+ s.e. (Vr), pollen deposition effectiveness per single visit (Dv) and per unit time (Dt) of every flower visitor recorded on E. lutea. The nomenclature for pollen deposition effectiveness follows [11]. Numbers
in parentheses in Dv-values show the number of stigmas analysed. Dashes in Dv columns indicate lack of stigmas for pollen counting, in most cases owing to low pollinator abundance. Percentages in parentheses in Dt-values represent
the contribution of each pollinator species to the total on a yearly basis. Asterisks in Dt columns indicate that estimates were calculated using the Dv-value recorded in the alternative year.

species

visitation rate (Vr, visits per flower
per hour) 3 100

pollen deposition effectiveness

per single visit (Dv) per unit time (5Dv3 Vr3 r)

2016 2017 2016 2017 2016 2017 mean

Hymenoptera

Bombus dahlbomii 0.18+ 1.05 0 345.8+ 404.7 (8) — 0.64 (4.2%) — 0.64 (4.3%)

Bombus terrestris 2.06+ 5.46 2.67+ 7.31 158.1+ 260.2 (126) 191.3+ 292.7 (39) 3.26 (21.4%) 5.10 (37.0%) 4.18 (27.9%)

Centris chilensis 0.85+ 3.12 0.42+ 1.67 103.2+ 207.1 (32) 315.6+ 658.2 (13) 0.88 (5.8%) 1.32 (9.6%) 1.1 (7.4%)

Centris nigerrima 3.23+ 7.16 0.32+ 1.54 201.1+ 334.8 (101) — 6.49 (42.6%) 0.64* (4.6%) 3.57 (23.9%)

Corynura chloris 0 0.01+ 0.07 — — — — —

Hypodynerus sp. 0.004+ 0.04 0.02+ 0.10 — — — — —

Megachile saulcyi 1.33+ 3.61 0.03+ 0.13 112.4+ 246.6 (52) — 1.50 (9.8%) 0.03* (0.2%) 0.77 (5.2%)

Megachile semirufa 0.06+ 0.53 0.04+ 0.25 — 37.0+ 25.0 (3) 2.22* (14.6%) 1.48 (10.7%) 1.85 (12.4%)

Svastrides melanura 0.01+ 0.11 0 38.4+ 33.4 (7) — 0.01 (0.1%) — 0.01 (0.1%)

Lepidoptera

Hyles annei 8.55+ 22.12 0 1.3+ 6.2 (44) — 0.11 (0.7%) — 0.11 (0.7%)

Pseudolucia sp. 0 0.004+ 0.03 — — — — —

Tatochila sp. 0.02+ 0.17 0.03+ 0.17 — — — — —

Vanessa carye 0.01+ 0.09 0.01+ 0.04 0 (1) 0 (1) 0 0 0

Diptera

Scaeva melanostoma 0.01+ 0.05 0.01+ 0.12 — — — — —

Bombylidae 0.02+ 0.23 0 4 (1) — 0.08 (0.5%) — 0.08 (0.5%)

Apodiformes

Oreotrochilus leucopleurus 0.02+ 0.11 2.21+ 6.03 — 236.5+ 433.1 (48) 0.05* (0.3%) 5.23 (37.9%) 2.64 (17.6%)
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limiting in the study site, which satisfies an important
criterion of Stebbins’ principle.

The number of pollen grains delivered onto stigmas per
pollinator species (Dv) and the resulting pollen deposition effec-
tiveness (Dt) are reported in table 1. In 2016, the species with the
highest Dt values were the solitary bee C. nigerrima and the
exotic B. terrestris. In 2017, the most effective pollinators were
the hummingbird O. leucopleurus and B. terrestris. Regarding
mean effectiveness during the two years, B. terrestris was the
most effective one, followed by C. nigerrima and O. leucopleurus.
Likewise, the invasive bumblebee was the less variable between
years (56%), followed by C. nigerrima (914%) and O. leucopleurus
(19 360%), indicating that B. terrestris had not only the highest
mean effectiveness but also the most stable one.

The two flower traits of E. lutea here examined were more
variable between than within plants (electronic supple-
mentary material, table S2), and represented important
targets of pollinator-mediated selection (figure 2b). Pollina-
tors were more likely to facilitate the reproduction of plants
with short flower tubes in 2017 and in the 2-year pooled
data (b2017 ¼ 20.13, bpooled ¼ 20.08). Likewise, pollinator-
mediated selection consistently favoured flowers with large
corollas (b2017 ¼ 0.14, b2018 ¼ 0.18, bpooled ¼ 0.14).

4. Discussion
Ouraim wasto examine the extent towhich flower traits of E. lutea
were under selection by the most efficient pollinator species as
predicted by Stebbins’ principle. Combining correlational and
experimental approaches, we showed that the bee C. nigerrima,
the hawkmoth H. annei and the hummingbird O. leucopleurus

provided variable pollination service to E. lutea, in part because
of their intermittent visitation rate to flowers and low effective-
ness in pollen deposition. In spite of being established only in
the last few years in the studysite, B. terrestris wasthe most impor-
tant pollinator for E. lutea. This observation is consistent with the
selection to reduce flower tube length in the plant population.
While flowers of E. lutea have a tube length of 35.8 mm on the
average (N¼ 100 flowers), the shorter tongue length of
B. terrestris (mean¼ 6.3 mm, range = 5.6–7.0 mm) relative to
the second most important pollinator, the solitary bee
C. nigerrima (mean¼ 9.0 mm, range¼ 8.2–9.8 mm), may
favour short-tubed flowers as expected for bee-pollinated species
[7,16]. Likewise, large corollas had a reproductive advantage over
small-sized corollas. Previous evidence in this system indicates
that bees visit corollas 1.25-fold larger than the hummingbird
[10], which is consistent with the idea that E. lutea is in the
process of adapting its flower phenotype to the effective bee
pollinators. The question whether variation in the pollina-
tor community across years reinforces the importance of
B. terrestris in moulding the floral phenotype of E. lutea stresses
the need for long-term studies of phenotypic selection in
this system.

One important assumption of Stebbins’ principle is that
pollinator effectiveness is tightly coupled to the strength of
pollinator-mediated selection. This assumption has been criti-
cally examined in optimality models that restrict the
generality of Stebbins’ model to cases where the marginal fit-
ness gain of specialization exceeds the marginal fitness loss of
adapting to the many less efficient pollinators [17]. The rela-
tively depauperate Chilean pollinator assemblages (4.25
pollinators per plant species on the average, [18]) offer little
gain from evolving generalized flower phenotypes, and,
therefore, high marginal fitness loss can be expected relative
to specialization on the most effective pollinator.

Although the arrival and establishment of exotic pollinators
in new environments is often associated with ecological risks
and unknown detrimental consequences for local communities
[19], to our knowledge their importance in driving flower adap-
tation of native plants has been poorly addressed in the
literature [20]. This is unfortunate, as we are just beginning to
understand the ecological and evolutionary consequences
of invasive species in the face of biotic exchange and hom-
ogenization [14,21]. It is likely that plant phenotypic and
genetic adjustments caused by recently arrived pollinators
are more common than previously thought. For instance, it is
now well established that evolution can occur rapidly in
response to invasive species [22–24], which implies that
native plant responses to highly effective exotic pollinators
may occur on a time scale of a few years after their arrival
and establishment in new habitats. All these facts together indi-
cate that invasive species may, under some circumstances,
become quickly the most important ones in local communities,
influencing not only ecological but also evolutionary processes.
Results from this study suggest that novel functional roles
adopted by invasive pollinators in new habitats may be more
complex than previously thought, and need to be addressed
before implementation of conservation programmes.

Ethics. This research was in accordance with the Ethics and Biosecurity
protocols of the University of Chile (1809-FCS-UCH).
Data accessibility. Data are available as electronic supplementary
material and in the Dryad Digital Repository (https://doi.org/
10.5061/dryad.m21q0th) [25].
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Figure 2. (a) Pattern of temporal change in the mean (s.e.) visitation rate of
Bombus terrestris during 9 consecutive years. Data from 2010 to 2012 were
obtained from [13], and those from 2013 to 2018 are unpublished from a
long-term research in the study site. (b) Directional selection b-coefficients
(s.e.) for tube length and corolla size in 2016, 2017 and in the 2-year
pooled analysis. *p , 0.05, **p , 0.01.
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